Discrete Random Variables 8

Intuitively, to tell whether a random variable is discrete, we simply consider the possible values of the random variable. If the random variable can be limited to only a finite or countably infinite number of possibilities, then it is discrete.

Example 8.1. Voice Lines: A voice communication system for a business contains 48 external lines. At a particular time, the system is observed, and some of the lines are being used. Let the random variable X denote the number of lines in use. Then, X can assume any of the integer values 0 through 48. [15, Ex 3-1]

Definition 8.2. A random variable X is said to be a **discrete** random variable if there exists a countable number of distinct real numbers x_k such that

$$\sum_{k} P[X = x_k] = 1. \tag{13}$$

In other words, X is a discrete random variable if and only if X has a countable support.

Example 8.3. For the random variable N in Example 7.8 (Three

Coin Tosses),

The possible value are
$$0.1, 2, 3$$
.

For the random variable S in Example 7.9 (Sum of Two Dice),

of times that you have to toss the coin.

Example 8.5. Measure the current room temperature.

The possible values are any real numbers between 273.15 to $\approx 1.417 \times 10^{32}$ °C. Any interval of positive length has uncountably many members in it. So, this random variable is <u>not</u> discrete.

8.6. Although the support S_X of a random variable X is defined as any set S such that $P[X \in S] = 1$. For discrete random variable, S_X is usually set to be $\{x : P[X = x] > 0\}$, the set of all "possible values" of X.

Definition 8.7. An *integer-valued random variable* is a discrete random variable whose x_k in (13) above are all integers.

8.8. Recall, from 7.21, that the **probability distribution** of a random variable X is a description of the probabilities associated with X. For a discrete random variable, the distribution can be described by just a list of all its possible values (x_1, x_2, x_3, \ldots) along with the probability of each:

$$(P[X = x_1], P[X = x_2], P[X = x_3], \ldots).$$

In many cases, it is convenient to express the probability in the form of a formula. This is especially useful when dealing with a random variable that has infinite support. It would be tedious to list all the possible values and the corresponding probabilities.

8.1 PMF: Probability Mass Function

Definition 8.9. When X is a discrete random variable satisfying (13), we define its **probability mass function** (pmf) by³²

- Sometimes, when we only deal with one random variable or when it is clear which random variable the pmf is associated with, we write p(x) or p_x instead of $p_X(x)$.
- The argument (x) of a pmf ranges over all real numbers. Hence, the pmf is (and should be) defined for x that is not among the x_k in (13) as well. In such case, the pmf is simply 0. This is usually expressed as " $p_X(x) = 0$, otherwise" when we specify a pmf for a particular random variable.

³²Many references (including [15] and MATLAB) does not distinguish the pmf from another function called the probability density function (pdf). These references use the function $f_X(x)$ to represent both pmf and pdf. We will NOT use $f_X(x)$ for pmf. Later, we will define $f_X(x)$ as a probability density function which will be used primarily for another type of random variable (continuous RV).

• The pmf of a discrete random variable X is usually referred to as its distribution.

Example 8.10. Continue from Example 7.8. N is the number of heads in a sequence of three coin tosses.

8.11. Graphical Description of the Probability Distribution: Traditionally, we use **stem plot** to **visualize** p_X . To do this, we graph a pmf by marking on the horizontal axis each value with nonzero probability and drawing a vertical bar with length proportional to the probability.

8.12. Any pmf $p(\cdot)$ satisfies two properties:

(a)
$$p(\cdot) \ge 0$$

~Z=1"

(b) there exists numbers x_1, x_2, x_3, \ldots such that $\sum_k p(x_k) = 1$ and p(x) = 0 for other x.

When you are asked to verify that a function is a pmf, check these two properties.

Example 8.13. Continue from Example 7.7 where we considered an experiment of rolling one fair dice and Example 7.20 where we defined let $Y(\omega) = (\omega - 3)^2$. Is Y a discrete random variable? If so, find its probability mass function.

Solution: First, recall that, in Example 7.20, we plugged in each possible value of ω to find the possible values of Y.

ω	1	2	3	4	5	6
$Y(\omega)$	4	1	0	1	4	9

Y is a discrete random variable because the number of its possible values is four (0,1,4,9) which is finite. Alternatively, (also from Example 7.20), because the finite set $\{0,1,4,9\}$ is a support of Y, we can make the same conclusion that Y is a discrete random variable.

Now, to find its probability mass function $p_Y(y)$, we need to find the probability of each possible value of Y. This can be done using the technique studied in Chapter 7.

•
$$P[Y=0] = P({3}) = \frac{1}{6}$$
.

•
$$P[Y=1] = P(\{2,4\}) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$
.

•
$$P[Y=4] = P(\{2,5\}) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$
.

•
$$P[Y=9] = P(\{6\}) = \frac{1}{6}$$
.

(Note that for other values y of Y, we have $P[Y = y] = P(\emptyset) = 0$. So, there is no need to consider them.)

$$p_{Y}(y) = \begin{cases} \frac{1}{6}, & y = 0, \\ \frac{1}{3}, & y = 1, \\ \frac{1}{6}, & y = 4, \\ 0 & \text{otherwise} \end{cases} = \begin{cases} \frac{1}{6}, & y = 0, 9, \\ \frac{1}{3}, & y = 1, 4, \\ 0 & \text{otherwise} \end{cases} = \begin{cases} \frac{1}{6}, & y \in \{0, 9\}, \\ \frac{1}{3}, & y \in \{1, 4\}, \\ 0 & \text{otherwise.} \end{cases}$$

8.14. Finding probability from pmf:

As mentioned at the end of Chapter 7, once the random variables are defined, we usually skip mentioning the sample space and the associated " (ω) "-part of the RV. So, we must be able to talk about probability directly from the RV itself. This can be done easily via the pmf.

For "any" subset B of \mathbb{R} , we can find

$$P[X \in B] = \sum_{x_k \in B} P[X = x_k] = \sum_{x_k \in B} p_X(x_k).$$

In particular, for integer-valued random variables,

$$P[X \in B] = \sum_{k \in B} P[X = k] = \sum_{k \in B} p_X(k).$$

8.15. Steps to find probability of the form P [some condition(s) on X] when the pmf $p_X(x)$ is known.

- (a) Find the support of X.
- (b) Consider only the x inside the support. Find all values of x that satisfy the condition(s).
- (c) Evaluate the pmf at x found in the previous step.
- (d) Add the pmf values from the previous step.

Example 8.16. Back to Example 7.7 where we roll one dice.

• The "important" probabilities are

$$P[X=1] = P[X=2] = \dots = P[X=6] = \frac{1}{6}$$

- In tabular form:
 Probability mass function **(PMF)**:

Dummy variable —	x	P[X=x]
variabic	1	1/6
	2	1/6
	3	1/6
	4	1/6
	5	1/6
	6	1/6

- $p_X(x) = \begin{cases} 1/6, & x = 1, 2, 3, 4, 5, 6, \\ 0, & \text{otherwise.} \end{cases}$
- In general, $p_X(x) \equiv P[X = x]$
- Stem plot:

Suppose we want to find P[X > 4].

	Steps	For this example
(4)	Find the support of X .	The support of X is $\{1,2,3,4,5,6\}$.
(b)	Consider only the <i>x</i> inside the support. Find all values of <i>x</i> that satisfy the condition(s).	The members which satisfies the condition ">4" is 5 and 6.
(6)	Evaluate the pmf at <i>x</i> found in the previous step.	The pmf values at 5 and 6 are all 1/6.
(9)	Add the pmf values from the previous step.	Adding the pmf values gives $2/6 = 1/3$.

Example 8.17. Consider a RV
$$X$$
 whose $p_X(x) = \begin{cases} 1/2, & x = 1, \\ 1/4, & x = 2, \\ 1/8, & x \in \{3, 4\}, \\ 0, & \text{otherwise.} \end{cases}$

Example 8.18. Suppose a random variable X has pmf

$$p_X(x) = \begin{cases} \frac{c}{x}, & x = 1, 2, 3, \\ 0, & \text{otherwise.} \end{cases} = \begin{cases} \frac{\pi}{100} & \pi = 1, 2, 3, \\ 0, & \text{otherwise.} \end{cases}$$

(a) The value of the constant c is

"Z=1":
$$\frac{C}{1} + \frac{C}{2} + \frac{C}{3} = 1 \implies C = \frac{1}{1+\frac{1}{2}\cdot\frac{1}{3}} = \frac{6}{11}$$

(b) Sketch its pmf

(c) P[X=1]

$$= p_{x}(1) = \frac{6}{11}$$

(d) $P[X \ge 2] = P_X(2) + P_X(3) = \frac{3}{11} + \frac{2}{11} = \frac{5}{11}$. There are two x values (in the support) that satisfy the statement "x ≥ 2 "

(e) P[X > 3] = 0

None of the x values (in the support) satisfies the statement "x>3"

8.19. Any function $p(\cdot)$ on \mathbb{R} which satisfies

- (a) $p(\cdot) \geq 0$, and
- (b) there exists numbers x_1, x_2, x_3, \ldots such that $\sum_k p(x_k) = 1$ and p(x) = 0 for other x

is a pmf of some discrete random variable.

8.2 CDF: Cumulative Distribution Function

Definition 8.20. The (*cumulative*) distribution function (*cdf*) of a random variable X is the function $F_X(x)$ defined by

$$F_{\mathbf{x}}(5) = P[\mathbf{x} \le 5]$$

$$F_{\mathbf{x}}(x) = P[\mathbf{X} \le x].$$

 $F_{\mathbf{x}}(\pi) = P[\mathbf{x} \in \pi]$ The argument (x) of a cdf ranges over all real numbers.

- From its definition, we know that $0 \le F_X \le 1$.
- Think of it as a function that collects the "probability mass" from $-\infty$ up to the point x.
- **8.21.** From pmf to cdf: In general, for any discrete random variable with possible values x_1, x_2, \ldots , the cdf of X is given by

$$F_X(x) = P[X \le x] = \sum_{x_k \le x} p_X(x_k).$$

Example 8.22. Continue from Examples 7.8, 7.12, and 8.10 where N is defined as the number of heads in a sequence of three coin tosses. We have

$$p_N(0) = p_N(3) = \frac{1}{8}$$
 and $p_N(1) = p_N(2) = \frac{3}{8}$.

(a)
$$F_N(0) = P[N \le 0] = p_N(0) = \frac{1}{8}$$

(b)
$$F_N(1.5) = P[N \le 1.5] = P_N(0) + P_N(1) = \frac{1}{4} + \frac{3}{8} = \frac{1}{2}$$

"pmf -> cdf" (c) Sketch of cdf

8.23. Facts:

- For any discrete r.v. X, F_X is a right-continuous, **staircase** function of x with jumps at a countable set of points x_k .
- When you are given the cdf of a discrete random variable, you can derive its pmf from the locations and sizes of the jumps. If a jump happens at x = c, then $p_X(c)$ is the same as the amount of jump at c. At the location x where there is no jump, $p_X(x) = 0$.

Example 8.24. Consider a discrete random variable X whose cdf $F_X(x)$ is shown in Figure 19.

Figure 19: CDF for Example 8.24

Determine the pmf $p_X(x)$. $p_{\times}(x) = \begin{cases} 0.1, & x = -2, \\ 0.5, & x = 0, \\ 0.3, & x = 2, \\ 0$

Instructions

- Separate into groups of no more than three students each. The group cannot be the same as any of your former groups after the midterm.
- 2. [ENRE] Explanation is not required for this exercise.
- 3. Do not panic.

Date: <u>1 5</u> / <u>1 0</u> / 2019			
Name	ID (last 3 digits)		
Prapun	5	5	5

1. Consider a random variable X whose pmf is given by

$$p_X(x) = \begin{cases} 0.2, & x = -1, \\ c, & x = 1, 3, \\ 0, & \text{otherwise.} \end{cases}$$

a. Find the constant c.

"\Sigma = 1" \Rightarrow p_X(-1) + p_X(1) + p_X(3) = 1
0.2 + c + c = 1
$$c = 0.4$$

b. Plot the cdf of this random variable.

Recall that the cdf can be derived from the pmf by using the $p_x(x)$ as the jump amount at x.

2. Consider a random variable X whose cdf is given by

$$F_X(x) = \begin{cases} 0, & x < 0, \\ 0.2, & 0 \le x < 3, \\ 1, & x \ge 3. \end{cases}$$
 At $x = 0$, there is a jump of size 0.2. At $x = 3$, there is a jump of size 0.8.

a. Find $P[X \le 1]$.

By definition,
$$P[X \le 1] = F_X(1) = 0.2$$
.

b. Find P[X > 1].

Because [X > 1] and $[X \le 1]$ are opposite (complementary) events, we know that $P[X > 1] = 1 - P[X \le 1] = 1 - 0.2 = 0.8$.

c. Plot the pmf of X.

For discrete RV, the pmf can be derived from the jump amounts in the cdf plot.

Here, the jumps in the cdf happen twice: at x = 0 and x = 3. The jump amounts are 0.2 and 0.8, respectively.

Therefore, $p_X(x) = \begin{cases} 0.2, & x = 0, \\ 0.8, & x = 3, \\ 0, & \text{otherwise.} \end{cases}$

8.25. Characterizing³³ properties of cdf:

CDF1 F_X is non-decreasing (monotone increasing)

CDF2 F_X is right-continuous (continuous from the right)

Figure 20: Right-continuous function at jump point

CDF3
$$\lim_{x \to -\infty} F_X(x) = 0$$
 and $\lim_{x \to \infty} F_X(x) = 1$.

8.26. For discrete random variable, the cdf F_X can be written as

$$F_X(x) = \sum_{x_k} p_X(x_k) u(x - x_k),$$

where $u(x) = 1_{[0,\infty)}(x)$ is the unit step function.

 $^{^{33}}$ These properties hold for any type of random variables. Moreover, for any function Fthat satisfies these three properties, there exists a random variable X whose CDF is F.