8 Discrete Random Variables

Intuitively, to tell whether a random variable is discrete, we simply
(D0 consider the possible values of the random variable. If the random variable can be limited to only a finite or countably infinite number of possibilities, then it is discrete.

Example 8.1. Voice Lines: A voice communication system for a business contains 48 external lines. At a particular time, the system is observed, and some of the lines are being used. Let the random variable X denote the number of lines in use. Then, X can assume any of the integer values 0 through 48. [15, Ex 3-1]
(D1) Definition 8.2. A random variable X is said to be a discrete random variable if there exists a countable number of distinct real numbers x_{k} such that

$$
\begin{equation*}
\sum_{k} P\left[X=x_{k}\right]=1 \tag{13}
\end{equation*}
$$

In other words, X is a discrete random variable if and only if X has a countable support.

Example 8.3. For the random variable N in Example 7.8 (Three Coin Tosses), The collection of possible values
The possible values are $0,1,2,3 . \quad\{0,1,2,3\}$ is finite. so, the RV

For the random variable S in Example 7.9 (Sum of Two Dice),
 of times that you have to toss the coin.
The possible values are $1,2,3 \ldots$ The collection of possible values

$$
\begin{aligned}
& \{1,2,3, \ldots\} \text { is countably infinite. } \\
& \text { so, the RV i. discrete. }
\end{aligned}
$$

Example 8.5. Measure the current room temperature.
The possible values are any real numbers between 273.15 to $\approx 1.417 \times 10^{32}{ }^{\circ} \mathrm{C}$. Any interval of positive length has uncountab y many members in it. So, this random variable is not discrete.

set	signal ins	$R V$
countable	distal	discrete
uncountable	analog	continuous

"default"
support
for dirurete
RV
x_{3}
x_{1}
x_{2}
x_{3}

8.6. Although the support S_{X} of a random variable X is defined as any set S such that $P[X \in S]=1$. For discrete random variable, S_{X} is usually set to be $\{x: P[X=x]>0\}$, the set of all "possible values" of X.

Definition 8.7. An integer-valued random variable is a discrete random variable whose x_{k} in (13) above are all integers.
8.8. Recall, from 7.21, that the probability distribution of a random variable X is a description of the probabilities associated with X. For a discrete random variable, the distribution can be described by just a list of all its possible values $\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ along with the probability of each:

$$
\left(P\left[X=x_{1}\right], P\left[X=x_{2}\right], P\left[X=x_{3}\right], \ldots,\right)
$$

In many cases, it is convenient to express the probability in the form of a formula. This is especially useful when dealing with a random variable that has infinite support. It would be tedious to list all the possible values and the corresponding probabilities.

8.1 PMF: Probability Mass Function

Definition 8.9. When X is a discrete random variable satisfying (13), we define its probability mass function (pmf) by ${ }^{32}$

$$
\text { lowercase } p_{X}(x)=P[X=x] \text {. }
$$

- Sometimes, when we only deal with one random variable or when it is clear which random variable the pmf is associated with, we write $p(x)$ or p_{x} instead of $p_{X}(x)$.
- The argument (x) of a pmf ranges over all real numbers. Hence, the pmf is (and should be) defined for x that is not among the x_{k} in (13) as well. In such case, the pmf is simply 0 . This is usually expressed as " $p_{X}(x)=0$, otherwise" when we specify a pmf for a particular random variable.

[^0]- The pmf of a discrete random variable X is usually referred to as its distribution.
Example 8.10. Continue from Example 7.8.N s the number of heads in a sequence of three coin tosses.

8.11. Graphical Description of the Probability Distribution: Traditionally, we use stem plot to visualize p_{X}. To do this, we graph a pmf by marking on the horizontal axis each value with nonzero probability and drawing a vertical bar with length proportional to the probability.
8.12. Any $\operatorname{pmf} p(\cdot)$ satisfies two properties:
(a) $p(\cdot) \geq 0$
(b) there exists numbers $x_{1}, x_{2}, x_{3}, \ldots$ such that $\sum_{k} p\left(x_{k}\right)=1$ and $p(x)=0$ for other x.

When you are asked to verify that a function is a pmf, check these two properties.

Example 8.13. Continue from Example 7.7 where we considered an experiment of rolling one fair dice and Example 7.20 where we defined let $Y(\omega)=(\omega-3)^{2}$. Is Y a discrete random variable? If so, find its probability mass function. $\left.P_{Y}(y) \equiv P_{[Y}=y\right]$
Solution: First, recall that, in Example 7.20, we plugged in each possible value of ω to find the possible values of Y.

ω	1	2	3	4	5	6
$Y(\omega)$	4	1	0	1	4	9

Y is a discrete random variable because the number of its possible values is four ($0,1,4,9$) which is finite. Alternatively, (also from Example 7.20), because the finite set $\{0,1,4,9\}$ is a support of Y, we can make the same conclusion that Y is a discrete random variable.

Now, to find its probability mass function $p_{Y}(y)$, we need to find the probability of each possible value of Y. This can be done using the technique studied in Chapter 7.

- $P[Y=0]=P(\{3\})=\frac{1}{6}$.
- $P[Y=1]=P(\{2,4\})=\frac{1}{6}+\frac{1}{6}=\frac{1}{3}$.
- $P[Y=4]=P(\{2,5\})=\frac{1}{6}+\frac{1}{6}=\frac{1}{3}$.
- $P[Y=9]=P(\{6\})=\frac{1}{6}$.
(Note that for other values y of Y, we have $P[Y=y]=P(\emptyset)=0$. So, there is no need to consider them.)
$p_{Y}(y)=\left\{\begin{array}{ll}\frac{1}{6}, & y=0, \\ \frac{1}{3}, & y=1, \\ \frac{1}{3}, & y=4, \\ \frac{1}{6}, & y=9, \\ 0 & \text { otherwise }\end{array} \quad=\left\{\begin{array}{ll}\frac{1}{6}, & y=0,9, \\ \frac{1}{3}, & y=1,4, \\ 0 & \text { otherwise }\end{array}= \begin{cases}\frac{1}{6}, & y \in\{0,9\}, \\ \frac{1}{3}, & y \in\{1,4\}, \\ 0 & \text { otherwise } .\end{cases}\right.\right.$
8.14. Finding probability from pmf:

As mentioned at the end of Chapter 7, once the random variables are defined, we usually skip mentioning the sample space and the associated " (ω) "-part of the RV. So, we must be able to talk about probability directly from the RV itself. This can be done easily via the pmf.

For "any" subset B of \mathbb{R}, we can find

$$
P[X \in B]=\sum_{x_{k} \in B} P\left[X=x_{k}\right]=\sum_{x_{k} \in B} p_{X}\left(x_{k}\right) .
$$

In particular, for integer-valued random variables,

$$
P[X \in B]=\sum_{k \in B} P[X=k]=\sum_{k \in B} p_{X}(k) .
$$

8.15. Steps to find probability of the form P [some condition(s) on X] when the $\operatorname{pmf} p_{X}(x)$ is known.
(a) Find the support of X.
(b) Consider only the x inside the support. Find all values of x that satisfy the condition(s).
(c) Evaluate the pmf at x found in the previous step.
(d) Add the pmf values from the previous step.

Example 8.16. Back to Example 7.7 where we roll one dice.

- The "important" probabilities are

$$
P[X=1]=P[X=2]=\cdots=P[X=6]=\frac{1}{6}
$$

Dummy variable	ta	form:	- Probability mass function (PMF):
	x	$P[X=x]$	
	1	1/6	$p_{X}(x)= \begin{cases}1 / 6, & x=1,2,3,4,5,6 \\ 0, & \text { otherwise }\end{cases}$
	2	1/6	
	3	1/6	- In general, $p_{X}(x) \equiv P[X=x]$
	4	1/6	
	5	1/6	- Stem plot:
	6	1/6	$1 / 6-90000$
			123456

Suppose we want to find $P[X>4]$.

| Steps | For this example... |
| :--- | :--- | :--- |
| (a) Find the support of X. | The support of X is $\{1,2,3,4,5,6\}$. |
| (b)Consider only the x inside the support.
 Find all values of x that satisfy the
 condition(s). | The members which satisfies the condition
 " >4 " is 5 and 6. |
| (c)Evaluate the pmf at x found in the previous
 step. | The pmf values at 5 and 6 are all $1 / 6$. |
| (d) Add the pmf values from the previous step. | Adding the pmf values gives $2 / 6=1 / 3$. |

Example 8.17. Consider a RV X whose $p_{X}(x)= \begin{cases}1 / 2, & x=1, \\ 1 / 4, & x=2, \\ 1 / 8, & x \in\{3,4\}, \\ 0, & \text { otherwise } .\end{cases}$
stem plot:

$$
\begin{align*}
P[X=2] & =p_{X}(2)=\frac{1}{4} \\
P[X>1] & =p_{X}(2)+p_{X}(3)+p_{X}(4) \tag{4}\\
& =\frac{1}{4}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}
\end{align*}
$$

Example 8.18. Suppose a random variable X has mf

$$
p_{X}(x)=\left\{\begin{array}{ll}
c / x, & x=1,2,3 \\
0, & \text { otherwise. }
\end{array}=\left\{\begin{array}{cc}
6 / 11 x, & x=1,2,3 \\
0, & \text { otherwise } .
\end{array}\right.\right.
$$

(a) The value of the constant c is

$$
\because z=1 ": \quad \frac{c}{1}+\frac{c}{2}+\frac{c}{3}=1 \Rightarrow c=\frac{1}{1+\frac{1}{2}+\frac{1}{3}}=\frac{6}{11}
$$

(b) Sketch its mf

(c) $P[X=1]$

$$
=p_{x}(1)=\frac{6}{11}
$$

(d) $P[X \geq 2]=\rho_{x}(2)+\rho_{x}(3)=\frac{3}{11}+\frac{2}{11}=\frac{5}{11}$.

There are twi ${ }^{2,3} x$ value) (in the support) that sati, fy the statement " $x \geqslant 2$ "
(e) $P[X>3] \underset{ }{\nearrow}$

None of the x values (in the support) satifie, the statement " $x>3$ ".
8.19. Any function $p(\cdot)$ on \mathbb{R} which satisfies
(a) $p(\cdot) \geq 0$, and
(b) there exists numbers $x_{1}, x_{2}, x_{3}, \ldots$ such that $\sum_{k} p\left(x_{k}\right)=1$ and $p(x)=0$ for other x
is a mf of some discrete random variable.

8.2 CDF: Cumulative Distribution Function

Definition 8.20. The (cumulative) distribution function (cdf) of a random variable X is the function $F_{X}(x)$ defined by
$F_{x}(5)=P[x \leqslant 5]$

$$
\mathcal{F}_{X}(x)=P[X \leq x]
$$

$F_{x}(\pi)=P[x \leqslant \pi]$ The argument (x) of a cdf ranges over all real numbers.

- From its definition, we know that $0 \leq F_{X} \leq 1$.
- Think of it as a function that collects the "probability mass" from $-\infty$ up to the point x.
8.21. From mf to cf: In general, for any discrete random variable with possible values x_{1}, x_{2}, \ldots, the cdf of X is given by

$$
F_{X}(x)=P[X \leq x]=\sum_{x_{k} \leq x} p_{X}\left(x_{k}\right)
$$

Example 8.22. Continue from Examples 7.8, 7.12, and 8.10 where N is defined as the number of heads in a sequence of three coin tosses. We have

$$
p_{N}(0)=p_{N}(3)=\frac{1}{8} \text { and } p_{N}(1)=p_{N}(2)=\frac{3}{8} .
$$

(a) $F_{N}(0) \equiv P[N \leqslant 0]=p_{N}(0)=\frac{1}{8}$
(b) $F_{N}(1.5) \equiv P[N \leqslant 1.5]=p_{N}(0)+p_{N}(1)=\frac{1}{8}+\frac{3}{8}=\frac{1}{2}$

$$
F_{N}(n)
$$

"pmf $\rightarrow c d f=(c)$ Sketch $\stackrel{\text { its }}{\text { of }} \mathrm{cdf}$

8.23. Facts:

- For any discrete r.v. X, F_{X} is a right-continuous, staircase function of x with jumps at a countable set of points x_{k}.
- When you are given the cdf of a discrete random variable, you can derive its pmf from the locations and sizes of the jumps. If a jump happens at $x=c$, then $p_{X}(c)$ is the same as the amount of jump at c. At the location x where there is no jump, $p_{X}(x)=0$.
$" c d f \rightarrow p m t{ }^{\text {Example 8.24. Consider ad }}{ }_{F_{X}(x) \text { is shown in Figure } 19 .}$

Figure 19: CDF for Example 8.24

ECS 315: In-Class Exercise \# 13-Sol

Instructions

1. Separate into groups of no more than three students each. The group cannot be the same as any of your former groups after the midterm.
2. [ENRE] Explanation is not required for this exercise.
3. Do not panic.

Date: $\underline{1} \underline{5} / \underline{1} \underline{0} / 2019$			
Name	ID		
Prapun	5	5	5

1. Consider a random variable X whose pmf is given by

$$
p_{X}(x)= \begin{cases}0.2, & x=-1 \\ c, & x=1,3 \\ 0, & \text { otherwise }\end{cases}
$$

a. Find the constant c.

$$
\begin{aligned}
" \Sigma=1 " \Rightarrow p_{X}(-1)+p_{X}(1)+p_{X}(3) & =1 \\
0.2+c+c & =1 \\
c & =0.4
\end{aligned}
$$

b. Plot the cdf of this random variable.

Recall that the cdf can be derived from the pmf by using the $p_{x}(x)$ as the jump amount at x.
2. Consider a random variable X whose cdf is given by

$$
F_{X}(x)=\left\{\begin{array}{ll}
0, & x<0, \\
0.2, & 0 \leq x<3 \\
1, & x \geq 3
\end{array}\right\} \text { At } x=0, \text { there is a jump of size } 0.2 .
$$

a. Find $P[X \leq 1]$.

By definition, $P[X \leq 1]=F_{X}(1)=0.2$.
b. Find $P[X>1]$.

Because $[X>1]$ and $[X \leq 1]$ are opposite (complementary) events, we know that

$$
P[X>1]=1-P[X \leq 1]=1-0.2=0.8
$$

c. Plot the pmf of X.

For discrete RV, the pmf can be derived from the jump amounts in the cdf plot.
Here, the jumps in the cdf happen twice: at $x=0$ and $x=3$. The jump amounts are 0.2 and 0.8 , respectively.
Therefore, $p_{X}(x)=\left\{\begin{array}{cc}0.2, & x=0, \\ 0.8, & x=3, \\ 0, & \text { otherwise. }\end{array}\right.$

$$
\text { (true for any } R V \text {) }
$$

8.25. Characterizing ${ }^{[33}$ properties of pdf:

CDF1 F_{X} is non-decreasing (monotone increasing)

$$
\equiv \text { it } a<b \text {, then } F_{x}(a) \leqslant F_{x}(b)
$$

CDF2 F_{X} is right-continuous (continuous from the right)

Figure 20: Right-continuous function at jump point
CDF3 $\lim _{x \rightarrow-\infty} F_{X}(x)=0$ and $\lim _{x \rightarrow \infty} F_{X}(x)=1$.
8.26. For discrete random variable, the cdf F_{X} can be written as

$$
F_{X}(x)=\sum_{x_{k}} p_{X}\left(x_{k}\right) u\left(x-x_{k}\right)
$$

where $u(x)=1_{[0, \infty)}(x)$ is the unit step function.

[^1]
[^0]: ${ }^{32}$ Many references (including [15] and MATLAB) does not distinguish the pmf from another function called the probability density function (pdf). These references use the function $f_{X}(x)$ to represent both pmf and pdf. We will NOT use $f_{X}(x)$ for pmf. Later, we will define $f_{X}(x)$ as a probability density function which will be used primarily for another type of random variable (continuous RV).

[^1]: ${ }^{33}$ These properties hold for any type of random variables. Moreover, for any function F that satisfies these three properties, there exists a random variable X whose CDF is F.

